US 2006/0107032 Al

tions in the on-chip function table are listed in the same
order as in the flash function table. Again, functions may be
ordered to maximize locality.

[0087] As represented by block 406, the program code
may be defined and/or modified to support function calls to
code stored in either the internal memory or the external
memory. This may involve, for example, modifying function
calls for functions that are not contained in romOnlyFunc-
tions.txt.

[0088] In some embodiments the compiler initially com-
piles the program code and determines which functions are
placed in the internal memory and, if applicable, external
memory. In some embodiments, to enable a function that is
stored in internal memory to be replaced with a function
stored in external memory, function calls may be expanded
to enable a relatively simple code swap. Various code
implementations may be used to provide this functionality.
In general, the code implementation depends on the specific
processor in the system. One example of such an expansion
for an Open RISC processor follows:

[0089] Original jump-and-link function call:
[0090] jal F_function

[0091] New load-word and jump-and-link function call:
[0092] 1w rl, TABLE_OFST(28)
[0093] jalrr1

[0094] Here, a register (r28) contains the base address of
the function table. The base address will either point to the
internal memory or to the external memory. The TPM will
first load the function pointer from the function table, and
will then jump-and-link to the function address in register r1.

[0095] In some embodiments there is a unique table offset
(“TABLE_OFST”) for each function that resides in a func-
tion table. For functions that reside in both the internal and
external function tables, the TABLE_OFST is the same.
Register r28 (or any other register or memory location may
be used for this purpose) may be reserved during compila-
tion. The firmware will initialize this register to either point
to the internal or external function table.

[0096] The use of code expansion as described above may
have a relatively minor impact on the performance of the
system. In general, jump-and-link instructions make up a
relatively small amount of the code. In a secure-code imple-
mentation, code size may increase by this amount due to the
function pointer table access. In addition, there may an
increase in latency if the instruction cache is not used to
authenticate and decrypt the flash function pointer table and
flash rodata access.

[0097] As represented by block 408, the internal and
external function tables may be generated by, for example,
calculating function pointers for each function. This proce-
dure is discussed in more detail below.

[0098] The internal function table may be used before
secure code has been loaded into flash or when a new secure
code image is being loaded. When the internal function table
is used, all called functions are contained in on-chip ROM.
In some embodiments the internal function table includes
boot routines, flash access functions, self-test functions,
authorization routines, and field upgrade commands. In

May 18, 2006

some embodiments this function table may only be gener-
ated during a full-layer or metal tape-out.

[0099] The external function table may be used once
secure code has been loaded into external flash. The TPM
uses the external function table to determine whether a given
function resides in the on-chip ROM or the external flash
memory. Original functions that have been modified may
reside in both the on-chip and external flash function tables.
In this case, the flash function table may indicate that the
newer, modified function stored in external memory should
be used. Even if all of the code initially resides in on-chip
ROM, the flash function table may be generated so that
functions may be replaced in future releases.

[0100] At block 410 the compiler completes the compila-
tion of the program code (including the functions) to gen-
erate the final machine code. In the event some functions are
to be stored in the external memory, machine code may be
generated for both the internal memory and the external
memory as discussed above.

[0101] As represented by block 412, at some point during
the manufacturing process a verification key (and optionally
an encryption key) may be generated for the code update
process. For example, in some embodiments cryptographic
processor(s) in a secure environment (e.g., a FIPS level 3
environment such as a hardware security module) generates
public and private key pair(s) to be used with all TPM
devices that the secure environment supports. The secure
environment then provides the public key(s) to the manu-
facturer so that the manufacturer may install the public keys
in each TPM. The private keys, on the other hand, are
protected from disclosure. For example, the signing (and
encryption) keys may be stored in the hardware security
module.

[0102] As represented by block 414, the manufacturer
tapes-out the chip and incorporates the internal secure code
information into the TPM device (e.g., chip). The internal
secure code information may include, for example, the
internal function table, the internal secure code, the internal
rodata and the public verification (and optionally decryp-
tion) keys. In some embodiments the internal secure code
information may be incorporated into the internal ROM
during a full tape-out or a metal tape-out of the chip. In other
embodiments the code may be loaded into a chip after it is
manufactured.

[0103] As represented by block 416, the manufacturer also
generates a flash secure code descriptor. The flash secure
code descriptor may be used to describe the code stored in
the external flash. For example, the secure code descriptor
may contain information that may be required by the TPM
to correctly initialize secure code hardware. In addition, the
secure code descriptor may be used to hold verification (and
optionally decryption) keys.

[0104] The following describes several examples of fields
that may be defined for one embodiment of a secure code
descriptor. One field may indicate that secure code firmware
stored in flash is valid. This field may be securely set in flash
by the upgrade complete sub-command as discussed below.
This field may be securely cleared in flash by the upgrade
start sub-command as discussed below. This field may be set
by the TPM.

[0105] Other fields may store, for example, the version of
the upgrade information, the most-significant 4 bytes of the



